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Abstract

Within the framework of rational thermodynamics set forth by Truesdell and Toupin [In: S. Fligge, C. Truesdell (Eds.),
Handbuch der Physik I1I/1, Springer, Berlin, 1960], and Coleman and Noll [Arch. Rational Mech. Anal. 13 (1963) 167-178], among
others, we study thermodynamic restriction on turbulence modelling. First, we show that the turbulent kinetic energy equation is a
direct consequence of the first law of thermodynamics, and in view of the second law of thermodynamics the turbulent dissipation
rate is in nature a thermodynamic internal variable. Second, we show that the principle of entropy growth expressed in the forms of
the Clausius—-Duhem and the Clausius-Planck inequalities, places a restriction on turbulence modelling, wherein the turbulent
dissipation rate as a thermodynamic internal variable plays a key role in ensuring the modelling adopted to be thermodynamically
admissible. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

It is well known that the Clausius—Duhem inequality put
forth by Truesdell and Toupin (1960) as a general form of the
principle of entropy growth for continuous media has been
widely applied in modern continuum mechanics for the past 40
years (cf. Truesdell, 1984). The idea that the Clausius—Duhem
inequality should be interpreted as an identical restriction on
constitutive relations was first suggested and applied by
Coleman and Noll (1963) in their studies of elastic materials
with heat conduction and viscosity. In a fundamental research
on thermodynamics of simple materials, Coleman (1964) took
the Clausius—Duhem inequality to be the expression of the
principle of entropy growth and constructed a systematic
method for reducing constitutive equations to forms compat-
ible with thermodynamics. The researches carried out by
Coleman (1964) and Coleman and Noll (1963) in the early
1960s show that the Clausius—-Duhem inequality severely re-
stricts the behavior of the response functionals, namely, the
constitutive equations, for the stress, the heat flux, the internal
energy, the entropy, and the free energy. Since then, a great
deal of follow-up researches on this line set forth by Coleman
and Noll have been witnessed in the literature of the many
branches of continuum mechanics (cf. e.g., Eringen and
Maugin, 1990; Huang and Batra, 1996).
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Recently, Sadiki et al. (1999) and Sadiki et al. (2000),
among others, investigated the thermodynamic constraints on
closure models for turbulence in the context of extended
thermodynamics; readers are referred to their work for a re-
view on various constraints on turbulence modelling. They
demonstrated in their papers that many non-linear and an-
isotropic turbulence models are in fact not thermodynamically
admissible, and they further showed that the so-called “real-
izability constraints” of Schumann (1977) are contained in the
second law of thermodynamics as one among other mathe-
matical conditions derived in exploiting the entropy inequality.
It is noticed that in their approach, the results obtained rely on
an introduced turbulent Helmholtz free energy y*, which is
assumed to take the following form:

T Cle 1 ,— — 2
lp =K II’I?—'—EOCS D,’jD[j-‘rb(S.,-) +A0 N (1)

where o, b, 4y and Cg are constants, K is the turbulent kinetic
energy, ¢ is the turbulent dissipation rate, Vv is the mean ve-
locity, and D = Y(grad¥ + (gradv)").

Turbulence is regarded as a continuum phenomenon
which can be described within the framework of continuum
mechanics, and in fact the turbulent flow is a thermodynamic
process. Then, under what conditions the constitutive equa-
tions proposed for solving the Reynolds-averaged Navier—
Stokes equations are compatible with the principle of entropy
growth? In fact, to require a constitutive equation to be
thermodynamically compatible is to impose restrictions upon
it. In this note, we shall follow the line of rational
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thermodyanmics, to study the relationships of the second law
of thermodynamics with turbulence modelling. It will be seen
that the turbulent dissipation rate is in nature a thermody-
namic internal variable in view of the second law of ther-
modynamics, and the Clausius-Planck inequality, which is a
reduced form of the Clausius—Duhem inequality when the
temperature field is homogeneous, places a restriction on
modelling the turbulent flows of an incompressible Navier—
Stokes fluid.

2. Internal dissipation and the Clausius—Planck inequality
In continuum mechanics, the laws assumed to hold from

the outset for materials of simple traction are, in an inertial
frame,

0+ odivv =0, 2)
ov=divT + gb, 3)
T=T, (4)
oé = tr(TD) + divh + gs, (5)

where g is the mass density, v is the velocity, T is the Cauchy
stress, e is the specific internal energy, D is the stretching tensor
(2D = gradv + (gradv)"), s is the supply of heating, b is the
body force density, h is the heat flux, and the dot represents the
material time derivative.

Here, Eq. (5) (the Fourier—Kirchhoft-Neumann equation)
is the local form of the first law of thermodynamics, i.e., the
energy balance equation. Now with the specific free energy ¥
defined by

Y .=e—nb, (6)

where 0 is the absolute temperature (6 > 0), and 5 is the spe-
cific entropy, we have the local expression of the Clausius—
Duhem inequality (cf. Truesdell and Noll, 1965; Truesdell,
1984)

h
00 = 0div<6) + os, (7)
equivalently,
h- grad0 g;ade > 0; ®)

also, the internal dissipation ¢ is defined as

o(0n —é) + tr(TD) +

0 := @01 — (divh + gs), 9)
equivalently,
0 = tr(TD) — o(¥ + n0) = tr(TD) — o(é — 07), (10)

which denotes the amount by which the increase of entropy
times the temperature exceeds the local heating.

If the temperature is homogeneous, the Clausius—Duhem
inequality (7) reduces to the Clausius—Planck inequality

0017 = divh + gs. (11)

It is evident from Egs. (9) and (11) that the necessary and
sufficient condition for the Clausius—Planck inequality is

5>0. (12)

Now consider the Navier—Stokes fluid (cf. Coleman and Noll,
1963)

T = —pl + 2tr(D)1 + 2uD, (13)

where p is the pressure, 1 is the unit tensor, u is the shear
viscosity, and 4 + 2u is the bulk viscosity. Note that

e= e(V, 77)7 p= 76\‘& 0= aﬂev (14)

where v = 1/0.
By Eq. (10), the internal dissipation reads

0 = A(trD)* 4 2utr(D?). (15)

From Eqgs. (12) and (15), noting (trD)2 < 3trD?, follow readily
the Duhem-Stokes inequalities:

£=0, 314230, (16)

which is the necessary and sufficient condition for non-nega-
tiveness of the internal dissipation in this case.

Moreover, if the fluid is incompressible, then the Duhem—
Stokes inequalities (16) simply become

1= 0. (17)

Hence, we see that for an incompressible Navier—Stokes fluid,
where the Cauchy stress takes the form

T = —pl + 2D, (18)

the viscosity u = 0 is merely a thermodynamic restriction on
the fluid itself. In the following, we shall show that in fact the
Clausius—Planck inequality, or equivalently as seen, the non-
negativeness of the internal dissipation, imposes constraints
upon turbulence modelling. We shall return to this point later.

3. Thermodynamic restriction on turbulence modelling

Here, we consider an incompressible Navier—Stokes fluid
with constant mass density ¢ and viscosity u. So from Egs. (2)-
(5), it follows that

divv =0, (19)
ov=divT + gb, (20)
gé = tr(TD) + divh + gs, (21)

where now T = —pl + 2uD.
Taking the ensemble average on Egs. (19)—(21), we have

divy =0, (22)
ov = div(T — 1) + b, (23)
0é = tr(TD) + tr(T'D’) + divh + g5, (24)

where the overbar represents the ensemble average, and the
prime ’ denotes the fluctuation, the o stands for the material
time derivative associated with mean velocity v, T := gv' ® V' is
the Reynolds stress tensor, and T = —p'1 +2uD’, where
2D’ = gradv' + (gradv)".

We shall derive the turbulent kinetic energy equation di-
rectly based on the first law of thermodynamics. To this end,
let us consider the global energy balance equation

H+E=P+ 3, (25)

where the kinetic energy
1

H == / o(v-v)dr, (26)
2 )4

the heating

Q::/ qu+/QSdV:/ h~ndS—§-/Qst7 (27)
o 2 oz 2

where # is the domain occupied by the fluid, 0% is the
boundary of 4, ¢ = h - nis the efflux of heating, n is the normal
unit vector; also, the mechanical working
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g);:/ v~TndS—i—/Qv~de7 (28)

0B »

and the internal energy

&= / gedV, (29)
]

where e is the specific internal energy.
The net working is given by

gujzf:/ v-TndS+/gv-def/g(vw")dV. (30)
Now taking the ensemble average on Eq. (30), noting

divv = divv’ = 0 and making use of the divergence theorem, a
bit involved but straightforward algebra yields

P = / div(Tv + TV)dV

+/ Q{V~B+v’-b/fv-%fv-div(v’@w’)
#

o

1= -
—Ev’~v/—v’~dlv(v’®v’) —

(Vev) -ﬁ} dr. (31)
From Egs. (29) and (25), it follows that
&= / gedV = / Q(% + (grade’) - v) dV
2 2
=P -4+ 32, (32)

where 2 = [, (divh + ¢5) dV'.
Assuming sufficient smoothness and noting Eq. (31), the
local expression of Eq. (32) reads

e = g% + o(grade) - v/
_ _ T
=(T—1)-D+divT'V +gb' - v figv/ v
—ov - div(v ® V') + divh + g5, (33)
where Eq. (23) has been used.
Comparing Eq. (33) with Eq. (24) gives

o

_ S I
—7-D+divT'Vv +ob -V figv’ vV —gv - div(vV ®V)

=T D =u(TD). (34)
Eq. (34) is nothing but the turbulent kinetic energy equation of
an incompressible fluid under consideration.

Substituting T' = —p'1 + 2uD’ into Eq. (34), we obtain

o 1
K= —1-D+div +2yD’v’—§0(v’ V)V )—i—@b/ V—¢g

= -1 D+d1v( PV + u(gradv + (gradv)")v
)—O—Qb’ vV —g, (35)

where K := 1oV’ - v = ltr(z) is the turbulent kinetic energy, and
¢:=2uD"- D' = tr(T'D’) is the turbulent dissipation rate.

If we set b’ = 0, then Eq. (35) reduces to the turbulent ki-
netic energy equation given in Hinze (1975).

Now we are in a position to show the thermodynamic re-
striction on the turbulence modelling of an incompressible
Navier—Stokes fluid. Let us return to the necessary and suffi-
cient condition for the Clausius—Planck inequality (15), which
in this case takes the simple form

6 =2u tr(D?) =0, (36)

where p > 0, as mentioned earlier, is but a thermodynamic
restriction on the incompressible Navier—Stokes fluid per se.

Taking the ensemble average on Eq. (36) of the internal
dissipation, we find that

5 =2utr(D) + 2u(D" - D) = 2utr(D’) + ¢ > 0. (37)

It is evident that in Eq. (37) the turbulent dissipation rate &,
which is generated from taking the ensemble average on the
internal dissipation J, manifests itself as a thermodynamic
internal variable. To see the fact, let us consider a simple case —
homogeneous turbulent flows, e.g., in decay of homogeneous
turbulence (cf. Corrsin, 1963), wherein the gradient of the
mean velocity field

gradv = 0. (38)
Then from Eq. (37), it follows immediately that
S=¢20, (39)

which is directly derived from the Clausius—Planck inequality.

It is worth noting that here as seen, ¢ > 0 is a direct con-
sequence of the principle of entropy growth expressed in the
form of the Clausius-Planck inequality, without appeal to the
kinematical property of the turbulent dissipation rate, which
reads ¢ > 0 as well by definition. That is, the turbulent dissi-
pation rate ¢ in itself is a thermodynamic internal variable.

From the turbulent kinetic energy equation, it is evident
that in modelling turbulence the thermodynamic internal
variable ¢ depends on all other unknown terms in the turbulent
kinetic equation, meanwhile it has to satisfy its own evolution
equation. Therefore, in fact, inequality (37) is not automati-
cally satisfied by an arbitrary closure model employed, but
unless on which appropriate restrictions were given, noticing
that the turbulent kinetic energy Eq. (35) is not closed. From
Eqgs. (35) and (37), follows the following inequality that en-
sures non-negativeness of the mean internal dissipation 6

— — l —
2utr(D2) —17-D+gb v — d1v<p’v/ + zg(v/ V)V = 2uD'v )

— o ] —
= 2utr(D2) —7-D+4gb v — div<p/v/ + EQ(V/ V)V

— u(gradv + (gradv/)T)v/)

o 0K
>K=7"+ (gradk) -v. (40)
Setting b’ = 0, namely, assuming there is no fluctuation of the

body force density, e.g., when b = g, where g is the acceleration
of gravity prescribed, it follows from Eq. (40) that

— 1 -
2ytr(D y—1-D— d1v<pv/ + 2g(v/ V)V = 2uD'v )

— — — 1 ——
= 2,utr(D2) —1-D—div (p’v’ + EQ(V' V)V

— p(gradv + (gradv’)T)v’)

:%—If-l—(gradK) -V. (41)

o

=

Remark 1. Inequality (41) is a weak restriction upon turbu-
lence modelling, which in fact marks the lower bound for the
turbulent dissipation rate for any closure model proposed,
ie,e> — 2utr(ﬁz), to be thermodynamically admissible. This
constraint indicates that an inappropriate modelling of the
Reynolds stress and other unknown correlation terms may

lead to a negative mean internal dissipation 6 and thus
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becomes incompatible with the principle of entropy growth. It
was noted in Sadiki et al. (2000) that some quadratic algebraic
stress models tend to produce results like negative turbulent
kinetic energy. Consequently, this may lead to a negative
turbulence dissipation rate so that the mean internal dissipa-
tion ¢ < 0.

It is clear that in view of inequality (37) a sufficient condi-
tion for non-negativeness of the mean internal dissipation is
e=0. (42)

Thus, by Eq. (35) and assuming b’ = 0, it follows a strong
thermodynamic constraint on turbulence modelling,

N B
—1-D—div (p’v’ + EQ(V’ V)WV — 2,uD/v’)

] —
=—1-D—div (p’v’ + Eg(v’ V)V — p(gradv + (gradv’)T)v’)

>K= aa—[f + (gradK) -¥. (43)

Remark 2. Eq. (37) implies that in general, in turbulent flows,
if at time ¢ and at a point x where gradv =0, or at which
D = 0 while W = J(gradv + (gradv)") # 0, namely, the mean
flow is in rigid rotation at x, then the weak restriction (41)
coincides with the strong restriction (43). Inequality (43) is a
stronger thermodynamic restriction for turbulence modelling
than (41), since now the lower bound for the turbulent dissi-
pation rate is zero, i.e., ¢ = 0.

Now, let us take a simple example to see the corresponding
thermodynamic constraint imposed on the Reynolds stress —
homogeneous turbulent shear flow, where

010
(gradv) =S| 0 0 O |. (44)
0 0 0

In this case, Eq. (43) gives the following thermodynamic re-
striction:

0K
or
Note that K = 1z,,,.
The above inequality implies if it were violated by a closure
model for the Reynolds stress, not only would the turbulent
dissipation rate & become negative but also as a result this may
lead to a negative mean internal dissipation ¢, if beyond the
lower bound for &, namely, —2utr(D").
For simplicity, consider a linear K—¢ model, which reads

2K
=5 1+ /3 (46)
where [ is a coefficient to be identified.

From Eqgs. (44)—(46), we find that

0K
ot

From inequality (47), it follows that § cannot be positive, since
otherwise (0K/0f) <0, but this is impossible because in ho-
mogeneous turbulent shear flow the turbulent kinetic energy
increases with time (cf. e.g., Speziale, 1991) and actually, as
pointed out by Lumley (1970) in this case K?/¢ is monotoni-
cally increasing with time. Thus, the thermodynamic con-
straint (45) restricts the coefficient  within the negative real
numbers. In practice, this coefficient takes the value f = —2C,,
where C, =0.09, in the so-called standard K—¢ model (cf.

—Stp, > (45)

—[J—S2 > (47)

Launder and Spalding, 1974), which therefore is consistent
with the principle of entropy growth in modelling homoge-
neous turbulent shear flow.

However, it is important to note that by satisfying the in-
equality induced by the principle of entropy growth, one can
only conclude that the model employed is consistent with the
second law of thermodynamics in predicting the given turbu-
lent flow, but this does not imply that the model will do a good
job as well in modelling other turbulent flows. In fact, no linear
eddy viscosity model can predict secondary flow in a fully
developed turbulent flow in a straight tube of non-circular
cross-section, because that would require non-zero normal
Reynolds stress differences on the cross-section of the tube (cf.
Speziale, 1982, 1991; Huang and Rajagopal, 1995).

Let us have a look at another example, a recent model of
Yoshizawa and Nisizima (1993), which was developed to
capture the so-called non-equilibrium effects of turbulence
based on a two-scale direct interaction approximation
approach (Kraichnan, 1964). The model of Yoshizawa and
Nisizima (1993) takes the form

2K K D
?17{2\)[/<1+C6|Zﬁ

. log v,) }ﬁ, (48)
where v, = C,(K*/¢), C,, = 0.09, and Cg is to be identified.
An approximation form of model (48) of Yoshizawa and
Nisizima (1993) reads

2K K2 K?
©=31-2C,—D - 2CaC, 5 (Ké = 2Ke)D. (49)

Substituting Egs. (48) and (44) into inequality (45), we obtain

K D
VtS2/<1 + CGI : E log Vt)

K? K D K? 0K
= C“?Sz/(l +CG|zﬁtlog (C“?)> = E (50)

Now, recalling that K*/¢ increases monotonically with time
and noting that ¢<SK, it is evident that inequality (50)
confines the coefficient Cs; to be a positive number, since
otherwise, during the shearing process it would happen that
(0K/0r) <0, but this is impossible. In the model of
Yoshizawa and Nisizima (1993), the coefficient C; was in-
dentified as Cg = 1.3, with recourse to the DNS data.
Again, we see that the model coefficient Cg; is confined to
be such that the modelling is compatible with the second
law of thermodynamics. Of course, it is not impossible that
this coefficient Cg; could be identified as a negative number
if the DNS date were flawed. Nonetheless, the thermody-
namic constraint as seen demarks clearly the region to which
Cs; should belong.

In closing, we have shown that the principle of entropy
growth, expressed in terms of the Clausius—Duhem and the
Clausius-Planck inequalities, imposes restrictions upon tur-
bulence modelling, wherein the turbulent dissipation rate e,
as a thermodynamic internal variable, plays a key role in
ensuring non-negativeness of the mean internal dissipation o
such that the modelling is thermodynamically admissible.
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